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Abstract 

The respiratory tract and digestive tract serve as the gateway between the host and the environment, play-
ing an important role in protecting against viral infections. Diseases caused by viruses that infiltrate the respira-
tory and gastrointestinal tracts account for the major infectious diseases in pigs, resulting in significant economic 
losses for the swine industry. However, studies on virus-host interactions are limited due to the lack of suitable 
research models that can effectively stimulate the highly complex physiological characteristics found in vivo. With 
the advancement in stem cell technology, organoids that more closely recapitulate the structure, function, and organ-
ization of specific organs or tissues in vitro have gradually become a research hotspot. These novel ex vivo models 
are critical for studying viral infection, investigating viral pathogenesis, elucidating virus-host interactions and devel-
oping preventive and therapeutic approaches. Currently, respiratory organoids and intestinal organoids (IOs) have 
been widely applied in the study of infectious diseases. Therefore, this review primarily summarizes the development 
of porcine respiratory and intestinal organoids, their applications in studying infection, current limitations, and future 
perspectives.
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Introduction
Respiratory and digestive diseases are common diseases 
on swine farms. African swine fever, porcine epidemic 
diarrhea (PED), porcine circovirus disease, porcine 
enzootic pneumonia and porcine colibacillosis are com-
mon diseases on large-scale pig farms [1]. Among them, 
viruses are one of the primary culprits responsible for 

the largest number of diseases and the most tremen-
dous economic losses [2]. For example, porcine epidemic 
diarrhea virus (PEDV) broke out in the United States in 
2013, and the virus had impacted approximately 50% of 
U.S. breeding herds within one year [3]. In 2018, African 
swine fever virus spread rapidly across China within a 
year and caused catastrophic damage to the pork indus-
try of China [4]. The respiratory and digestive tracts of 
the host are dynamic, cellularly diverse and histologically 
intricate systems under tight regulation. In addition to 
maintaining normal physiological functions, they must 
form a protective barrier to resist an entry of the tre-
mendous array of pathogens into the host organism [5–
7]. The nasal mucosa, lysozyme, interferon (IFN), SIgA 
antibodies secreted by the trachea and bronchi, and the 
alveolar macrophages play important roles in protecting 
the body against respiratory viruses [8]. The intestinal 
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barrier, which consists of the mechanical barrier, chemi-
cal barrier, microbial barrier and immune barrier, plays a 
key role in maintaining intestinal health and preventing 
the invasion of enteroviruses [9]. Therefore, the respira-
tory and digestive tracts play an important role in viral 
infections. Having a suitable model is crucial for elucidat-
ing the infection and pathogenic mechanisms of viruses, 
and animal models and immortalized (cancerous) cell 
lines are the primary models for studying host–pathogen 
interactions [10, 11]. Although these model systems have 
greatly expanded our knowledge of virology, their limita-
tions are also evident. Universally used transformed cell 
lines are genetically unstable and do not recapitulate the 
complex composition and microenvironment of untrans-
formed cells, nor the complex interactions between the 
viruses and the host’s immune response [12, 13]. Animal 
models provide a functional read-out and a more com-
prehensive model of infection, but they are limited by 
individual variations, biological differences between spe-
cies, animal welfare and ethical concerns, and are also 
hampered by high cost, low throughput, and poor con-
venience [14]. Successful cultivation of organoids bridges 
the gap between transformed cell lines and animal mod-
els by addressing in  vivo complexity to reconcile mod-
erate systemic complexity and reproducibility [15, 16]. 
Compared to three-dimensional (3D) cultures of tissue 
explants, organoid systems have better genetic stability 
and better mimic cell–cell/cell–matrix interactions [13, 
17, 18]. Over the past decade, virologists have increas-
ingly turned to organoids as tools to further elucidate 
virus-host interactions [19–22].

Overview of airway organoids (AOs) and intestinal 
organoids (IOs)
Organoids, also known as "mini-organs," are 3D struc-
tures grown from stem cells. These structures are com-
posed of organ-specific cell types to recapitulate the 
cellular structure and function of native organs [15, 23]. 
In recent years, organoids have been widely used in many 
biological fields, not only for studying the interaction 
between hosts and pathogenic microorganisms (bacteria, 
viruses, and parasites) [22, 24–27], but also for immu-
nological research, to understand epithelial cell-immune 
cell interactions [28–30]. In addition, organoids play an 
important role in cancer research, tissue regeneration, 
and clinical drug screening [31, 32]. The starting point for 
creating an organoid can vary considerably. In the mod-
els currently used, the tissue structure is mainly obtained 
from pluripotent stem cells (PSCs) and adult stem cells 
(ASCs). Among them, PSC-derived organoids include 
embryonic stem cells (ESCs)-derived organoids and 
induced pluripotent stem cells (iPSCs)-derived organoids 
[12]. In addition to producing epithelial cell types, PSCs 

can also differentiate into other functional cells, such as 
fibroblasts and muscle cells. ASCs-derived organoids 
are generated by directly dissociating intrinsic ASC-
containing tissues and exposing them to tissue-specific 
growth factors [33], followed by tissue-specific enrich-
ment by modulating individual signaling pathways such 
as bone morphogenic protein (BMP) or Notch [34]. In 
summary, the growth factors used in the culture of PSCs 
and ASCs-derived organoids are different because ASCs 
have undergone a certain degree of differentiation com-
pared with PSCs. PSCs or ASCs grow in various extracel-
lular matrices (such as Matrigel) and self-assemble into 
3D structures. Growth factors in the medium can induce 
further development of organoids from stem cells to dif-
ferentiated cells that mimic functional epithelium [35]. 
With the continuous advancement of organoid technol-
ogy, porcine organoid culture technology has developed 
rapidly. Porcine organoids derived from ASCs, such as 
AOs and IOs, have been successfully established in vitro 
(Fig. 1). They currently play an important role in disease 
research. In addition, since the size and the composition 
of the porcine genome and the functional features of por-
cine organs are similar to humans, porcine organoids are 
often used to simulate the physiological and pathological 
functions of humans [36]. As a result, porcine organoids 
have been widely used in agriculture, veterinary medi-
cine, and biomedicine.

Airway organoids (AOs)
The airway (except the nasal vestibule) to the terminal 
bronchioles contains five major types of epithelial cells: 
ciliated cells, goblet cells, small granule cells, brush cells 
and basal cells [37, 38]. Alveolar sac, as the basic unit of 
oxygen exchange, is lined with alveolar epithelium com-
posed of flat type I alveolar epithelial (AT1) cells and 
cuboidal type II alveolar epithelial (AT2) cells [39]. Cur-
rently, AOs (respiratory tract and lung) have been widely 
used to monitor viral infection, explore pathological 
changes, and identify potential treatments [40–42].

AOs can be obtained from a variety of stem cells, 
including iPSCs, ESCs, and adult or fetal stem cells from 
surgical specimens, each of which can differentiate into 
all cell types [43]. Depending on the type of stem cells, 
AOs are divided into PSC-derived and ASC-derived 
AOs. Currently, PSC-derived AOs play an important role 
in the study of lung developmental biology due to their 
advantages, such as not being limited by tissue sample 
scarcity, having stable amplification capacity, being able 
to differentiate into most cell types, and being accessi-
ble for gene editing [44–46]. The culture of PSC-derived 
AOs involves four essential stages: definitive endoderm, 
anterior foregut endoderm, lung progenitor cells, and all 
types of AOs [47–49]. However, only AOs derived from 
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human or mouse PSCs have been reported thus far, and 
AOs from porcine PSCs have not yet been reported.

Although PSC-derived AOs can be differentiated to 
represent airway and alveolar regions, their differentia-
tion process is complex and tedious. Thus, using PSC-
derived AOs as a model remains limited. In contrast, 
ASC-derived AOs are widely used  due to their ability 
to exhibit complex structures with mature components 
[50–52]. Unlike intestinal stem cells (ISCs), multiple 
cell types in the lung are capable of pluripotent differ-
entiation when the lung is injured. In numerous studies 
researchers have attempted to develop AOs from differ-
ent progenitor cells from mice and humans, including 
basal cells, rod cells, secretory cells and AT2 cells [53, 
54]. For example, human lung organoids have been devel-
oped from normal lung tissue and directed to an imma-
ture state in a feeder-free culture system. Organoids in an 
immature state can faithfully generate epithelial domains 
that phenocopy the native airway epithelium by adopt-
ing a proximal differentiation protocol [55]. Moreover, 
alveolar organoids composed of AT1 and AT2 cells can 
be generated by adopting a distal differentiation protocol 
[56, 57]. Zhou et al. [55] established long-term expanded 
3D human AOs with normal lung tissue, and developed 
an improved two-dimensional (2D) monolayer culture 
system for the differentiated AOs. Furthermore, due 
to the basal-out polarity of first-generation organoids, 
pathogens can rarely attach directly to the apical mem-
brane, making it difficult to initiate infection. Boecking 
et al. [58] established AOs with externally oriented apical 
membranes, which is conducive to pathogenic infection 

of AOs. Before that, most studies of porcine respiratory 
infections were conducted using immortalized cell lines, 
primary airway epithelial cells, or porcine lung explants 
[59–61]. With the development of organoid technology 
in  vitro, our laboratories achieved long-term porcine 
AOs (Fig.  2), which contain four main airway epithelial 
cell types: ciliated cells, goblet cells, basal cells and club 
cells [62]. The results from further experiments indicated 
that both 3D and 2D AOs can be successfully infected 
with transmissible gastroenteritis coronavirus (TGEV) 
and porcine respiratory coronavirus (PRCoV), and can 
produce significant interferon (IFN) and inflammatory 
responses, demonstrating that porcine AOs have become 
a potential universal platform for porcine respiratory 
infections [62].

Intestinal organoids (IOs)
The intestinal epithelium, which consists of the villus and 
the crypt, is the fastest self-renewing tissue in mammals, 
and the ISCs located in the bottom crypt region are an 
indispensable driving force for its rapid renewal [63]. ISCs 
undergo asymmetric cell division into new stem cells and 
committed daughter cells, termed transit-amplifying (TA) 
cells. TA cells subsequently differentiate into functional 
cell types, including absorptive enterocytes and secretory 
cells (Paneth cells, goblet cells, and enteroendocrine cells) 
[64]. The self-proliferation and differentiation of ISCs are 
regulated via various signaling pathways. For example, the 
Wnt signaling pathway plays an important role in promot-
ing cell proliferation and self-renewal [65], the Notch sign-
aling pathway promotes cell differentiation, and the BMP 

Fig. 1  Schematic diagram of porcine adult stem cells derived respiratory and intestinal organoid culture. Currently, porcine AOs are grown using 
basal epithelial cells isolated from the trachea. AOs are composed of the four main types of airway epithelial cells, including ciliated cells, goblet 
cells, basal cells, and club cells. IOs mainly include five main cell types: goblet cells, intestinal epithelial cells, enteroendocrine cells, Paneth cells 
and intestinal stem cells



Page 4 of 11Liu et al. One Health Advances            (2024) 2:22 

signaling pathway inhibits the activity of the β-catenin pro-
tein [66, 67]. In recent years, with the progress of intesti-
nal stem cell isolation technology, it has become possible 
to achieve long-term culture of intestinal epithelial cells 
in vitro. IOs can be generated by differentiation from PSCs 
or by derivation from isolated multipotent stem cells and 
progenitor cells present in  vivo intestinal crypts. Among 
them, organoids initially created from the small intestinal 
crypts containing lgr5+ ISCs are called enteroids, those cre-
ated from the colon crypts containing lgr5+ ISCs are called 
colonoids [68]. In 2009, IOs were first developed by Sato 
et  al. [69] by culturing mouse intestinal crypts or single 
ISCs in an extracellular matrix. In 2011, the same research 
group established crypt-derived human IO cultures by 
adding nicotinamide and various small molecule inhibi-
tors that are used to promote the growth of mouse orga-
noids [70]. In the same year, Spence et al. [71] established 
PSC-derived human IOs. Subsequently, other researchers 
reported the successful culturing and establishment of IOs 
in cattle, pigs, dogs, cats, chickens, and bats [25, 72–76]. 
The choice of IO model depends on the purpose of the 
study [77]. For instance, PSC-derived IOs may be better 
when studying the intestinal development and differentia-
tion in vivo, while ASC-derived IOs may be preferable for 
disease research because the characteristics of the tissue 
of origin are preserved in the organoids. Whichever the 
IO models, all intestinal epithelial cell types, are polarized 
toward the lumen, and can be cultured in an in vitro envi-
ronment for prolonged periods of time. Although recent 
progress has been made in developing livestock iPSCs and 
ESC [78], all porcine IO models are developed primarily 
with tissue-derived intestinal epithelial stem cells (IESCs) 
(Fig. 1). The first step of porcine IO culture is to obtain the 
porcine intestinal segments, and then dissociation buffer 
is used to isolate epithelial crypts that contain IESCs. 
Next, the isolated crypts were seeded in Matrigel and the 
growth medium was added [79]. The three proteins Wnt3a, 
R-spondin1 and Noggin in the growth medium play a 
key role in culturing porcine IOs [79]. In addition, other 

supplementary factors in the culture medium, including N2 
supplementation, B27 supplementation, nicotinamide, and 
N-acetylcysteine, ensure the long-term culture of porcine 
IOs [80]. Matrigel, which is widely used in organoid culture 
and is prepared from the secretion of EngelbrethHolm-
Swarm mouse sarcoma cells [81], has several key limita-
tions, including complex and poorly defined composition, 
batch-to-batch variability, high cost and safety issues [82]. 
Therefore, more and more studies are trying to find new 
organoid culture substrates. Currently, synthetic hydrogel 
matrices, decellularized extracellular matrices, and natural 
hydrogels such as type I collagen all have the potential to 
replace Matrigel [83]. Gonzalez et al. [73] successfully cul-
tured porcine IOs from piglet jejunum for the first time. 
Since then, porcine IOs from different intestinal segments, 
such as the duodenum, jejunum, ileum, and colon, have 
been rapidly established and used as in  vitro models in 
various research fields [22, 84–86] (Fig. 3). Kar et  al. [87] 
found that the transcriptome profiles of different intestinal 
segments and their derived organoids showed high resem-
blance, which demonstrates the high complexity of porcine 
IO and the resemblance to in vivo tissue. Duchesne et al. 
[88] evaluated the effect of ISC donor age on the growth, 
morphology, and cellular composition of porcine IOs. This 
study revealed that IOs derived from young piglets bud and 
grow faster than  those derived from older pigs, but there 
was no difference in the cellular composition of the orga-
noids. In addition, Li et  al. [22] reported that compared 
with enteroids, the proliferation and differentiation rate of 
colonoids is significantly slower.

The application of airway organoids (AOs) 
and intestinal organoids (IOs) in virology research
In the past decade, respiratory viruses, and enteroviruses 
such as PEDV, TGEV, pseudorabies virus and porcine 
reproductive and respiratory syndrome virus (PRRSV) 
have caused serious economic losses in the swine indus-
try [89–91]. Different viruses follow different infection 
mechanisms in their hosts, leading to different disease 

Fig. 2  Porcine ASC-derived airway organoids. Representative images of AO differentiation derived from the trachea of 2-day-old piglets. The 
tracheal epithelial cells were cultured in a Matrigel matrix, and their daily growth was observed under a microscope [62]. Scale bar = 200 mm
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symptoms, so it is important to use the model system 
that allows for the most accurate recreation of viral infec-
tion mechanisms. Cell lines commonly used in previous 
studies, such as IPEC-J2 and IPI-2I [92], are not suscepti-
ble to infection by certain viruses, and there are huge var-
iations in the findings reported from different research 
groups using the same cell lines [93]. Therefore, there is 
an urgent need to develop a more physiological culture 
system for porcine virology research. Currently, porcine 
organoids, which can simulate better in  vivo environ-
ments, are widely used in the field.

Airway organoids (AOs) in virology research
AOs provide a reliable platform for studying virus-host 
interactions in the nasal cavity, proximal lung, and dis-
tal lung in vitro. AOs derived from different parts of the 
respiratory tract provide novel opportunities to study cell 
tropism of viruses and the immune response of the host. 

Furthermore, researchers can focus on different cell types 
or regions in the respiratory tract to target therapeutics 
of various viruses [94].

AOs have been used extensively for treating respira-
tory pathogens in humans and rodent species. It has been 
reported that AOs derived from ASCs can be used to 
study influenza viruses and respiratory syncytial viruses 
[55, 95], and airway and lung organoids derived from 
ASCs and human PSCs have been used in research on 
severe acute respiratory syndrome coronavirus 2 [20, 
96]. Although many viruses, such as PRCoV, swine influ-
enza virus, and PRRSV, can infect respiratory epithelial 
cells (Table  1), there are few reports on porcine AOs. 
In 2022, our laboratories successfully generated long-
term porcine AOs derived from basal epithelial cells and 
applied this model to assess the permissiveness of AOs 
for PRCoV and TGEV infection for the first time [62]. 
We infected 3D AOs differentiated from the tracheal 

Fig. 3  Porcine ASC-derived intestinal organoids. A Representative images of the time course of porcine enteroid differentiation from intestinal 
crypts. During culture in Matrigel, small spheroids form on day 3 after crypt isolation, gradually mature over time, and form budding-like 
crypt structures on day 7 [22]. B Representative images of the time course of porcine colonoid development. Colonic crypts were isolated 
and differentiated into budding-like colonoid structures on day 15 [22]
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epithelium with PRCoV and TGEV and observed that 
both PRCoV and TGEV could successfully infect pig 3D 
AOs and mainly infected the secretory cells and ciliated 
cells. Moreover, the cell-intrinsic response of AOs after 
viral infection helps to elucidate the pathogenic mecha-
nism of coronavirus, and single-cell RNA sequencing 
results indicate that PRCoV induces a strong immune 
response in infected AOs. In most 3D organoid mod-
els, the apical side of the cells is facing the inside of the 
organoid, whereas the apical side of the 2D AO cells is 
exposed to the air, making it more susceptible to viral 
infection and therefore more suitable for virologic studies 
[50]. Likewise, the study found that 2D single-layer AOs 
were more susceptible to infection than 3D AOs [62]. In 
addition to 2D AO models, apical-out AO models and 
organoids seeded on Transwell plates to form organoids 
and air–liquid interface (ALI) models are helpful for viral 
infection. The ALI culture system can expose apical cells 
to the outside environment, so organoids are more sus-
ceptible to infection by pathogenic microorganisms than 
basal-out organoids. However, ALI culture systems rely 
heavily on the use of tissue culture plate inserts, which 
are composed of permeable membranes and have limited 
scalability. As a comparison, apical-out organoids both 
overcome this limitation and allow the apical cells to be 
exposed to the outside. However, these culture systems 
have not yet been applied to porcine AOs [97, 98]. In 
summary, the porcine AO model can simulate the infec-
tion process of the virus in vivo, which lays the founda-
tion for further in-depth exploration of the pathogenic 
mechanism of respiratory coronavirus.

Intestinal organoids (IOs) in virology research
Diarrhea caused by various intestinal pathogenic micro-
organisms is a common clinical disease, which seri-
ously endangers human or animal health [106]. In the 
development of diarrheal diseases, intestinal epithelium 
is the main target of pathogenic infection [107]. Since 
traditional in  vitro cell models cannot recapitulate the 
highly complex physiological characteristics of the gas-
trointestinal tract, IO models that can better simulate 
the in vivo environment have become important research 
models. To date, the IOs have been applied for mod-
eling host-bacterial dynamics and interactions between 

the intestinal epithelium and organisms such as E. coli, 
Clostridium difficile, and Salmonella typhi. This model 
has also been utilized to reveal novel and interesting 
aspects of host-virus interactions as well as features of 
replication and pathogenesis for enteric viruses [108].

A variety of viruses exist in the porcine intestine, but 
current studies using IOs primarily focus on porcine 
enteric coronaviruses, such as PEDV, TGEV, and porcine 
deltacoronavirus (PDCoV) [109–111] (Table  2). These 
viruses are the main causes of watery diarrhea in new-
born pigs and pose a huge threat to the swine industry 
and public health [112]. In 2019, our laboratories first 
studied the susceptibility of porcine intestine to PEDV by 
establishing porcine IOs from porcine duodenum, jeju-
num, ileum, and colon. The results showed that PEDV 
infects multiple types of cells in IOs, including entero-
cytes, goblet cells and stem cells. Additionally, there are 
potential differences in the susceptibility of organoids 
derived from different intestinal segments to PEDV 
infection; that is, PEDV preferentially infects ileal orga-
noids compared with colon organoids. These findings 
are consistent with the in vivo results [22]. Furthermore, 
we found that PDCoV preferably infected the jejunum 
and ileum, and restricted replication in the duodenum 
and colon in the established IOs from different intes-
tinal segments in 2020 [21]. Our study provides further 
evidence that the differences in PDCoV tropism for dif-
ferent intestinal segments are mainly determined by host 
aminopeptidase N rather than IFN [21]. Additionally, 
Luo et  al. [113] established porcine small IOs to detect 
the replication of PDCoV in vitro. Double immunofluo-
rescence labeling showed that PDCoV was present in 
Sox9-positive intestinal cells and Villin1-positive entero-
cytes. In 2022, our laboratories used IOs to evaluate host 
epithelial cell responses to infection by three porcine 
enteric coronaviruses (PEDV, TGEV, and PDCoV), and 
the results from these studies showed that they act via a 
contrasting, similar, and unique mechanism to modulate 
global IFN responses and the expression of antigen-pres-
entation-associated genes [112]. Besides coronaviruses, 
Lee et  al. [114] reported that mammalian orthoreovi-
rus type 3 (MRV3) can infect 2D and 3D porcine jejunal 
organoids, and that the virus can infect, replicate and 
activate immune responses in organoids successfully, 

Table 1  The respiratory epithelial cells in virus infection

Infected epithelial cells Virus Reference

ciliated epithelial cells, secretory cells, type I and II pneumocytes swine influenza virus [99, 100]

secretory cells, type I and II pneumocytes PRCoV [62, 101, 102]

ciliated epithelial cells, type II pneumocytes PRRSV [103–105]
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suggesting that 2D and 3D jejunal organoids, as in vitro 
models, have broader application prospects beyond por-
cine enteric coronaviruses. Yan et al. [115] reported that 
apical-out enteroids and 2D filter-grown intestinal epi-
thelial cells but not basolateral-out enteroids were more 
susceptible to PRV infection. Guo et al. [116] used a 3D 
IO model to identify the important roles of cell surface 
glycans in PRV infections.

Because the interior of the IOs is an intestinal cav-
ity and the exterior is wrapped in Matrigel, this struc-
ture could limit viral infection. To address this problem, 
researchers have developed several solutions: (1) Change 
the 3D structure to a 2D structure. Cell suspension of 
IOs was resuspended in medium during passage and 
then plated in Matrigel precoated tissue culture plates or 
seeded on permeable filter supports using the Transwell 
system [84, 85, 115, 119]. Compared with plating in tissue 
culture plates, the Transwell system has advantages in 
studying cell migration and invasion, and cell–cell inter-
actions [120]. (2) Use microinjection technology to inject 
microorganisms into the cavities of organoids [121]. (3) 
Establish the apical-out organoid model. Li et  al. [111] 
have successfully established porcine apical-out IOs, in 
which TGEV infection can be effective, inducing type I 
and type III IFN antiviral responses and inflammatory 
responses.

Limitations of porcine airway organoids 
(AOs) and intestinal organoids (IOs) in studies 
with viruses and future perspectives
By recapitulating the intricate cellular organization and 
microenvironments found in real organs, these orga-
noids are critical for virological research. Although por-
cine organoids have many advantages, similar to all other 
model systems, there are important limitations to be 
considered. Airways and IOs maintain cellular diversity 

but lack other cell types critical to airway and intestinal 
function, including immune cells, lymphocytes, endothe-
lial cells, neurons, smooth muscle, and fibroblasts. To 
address these limitations, many efforts have been made 
to develop co-cultural organoid models that can be cul-
tured with other cell types [122]. These models allow for 
a more comprehensive study of interactions between 
virus-infected epithelial cells and other non-epithelial 
cells, including monocytes, dendritic cells, lymphocytes, 
stromal cells, adipocytes, endothelial cells, and neurons. 
As co-culture systems continue to be refined, we believe 
that more valuable platforms will be developed for study-
ing pathogenesis beyond the epithelium. Additionally, 
organoids can be employed in preclinical drug develop-
ment and toxicology studies, bridging the gap between 
traditional cell-based assays and animal testing. With the 
development of this technology, organoids-on-chip will 
provide a valuable high-throughput screening platform 
for drug discovery and medical research.

The development of PSC-derived organoids contain-
ing mesenchymal cells is also important for increasing 
organoid complexity. The successful cultivation of por-
cine PSCs makes it possible to induce the differentiation 
of stem cells into organoids [78]. In recent years, with 
the rapid rise of gene editing technology, the potential 
for generating genetically engineered swine organoids 
had opened exciting avenues for studying gene function, 
gene editing, and regenerative medicine applications. 
At present, studies have successfully transduced lentivi-
ral vectors into porcine IOs, and other researchers have 
used CRISPR Cas9 technology for gene editing in orga-
noids, but this technology has not been used in porcine 
organoids [123–126]. The application of bioprinting 
technology has accelerated the construction process of 
organoids. Bioprinting can construct 3D living organs 
and tissues by designing and selectively distributing cells, 

Table 2  Porcine IOs in virus infection

Segment Model Pathogen Reference

duodenum, jejunum, ileum, colon 2D-monolayered organoids PEDV [22]

duodenum, jejunum, ileum 3D organoids PEDV, TGEV [79]

duodenum, jejunum, ileum 2D-monolayered organoids PDCoV [113]

jejunum apical-out organoids TGEV [111]

jejunum 2D-monolayered organoids PEDV, TGEV, PDCoV [112]

jejunum 2D-monolayered organoids MRV3 [114]

jejunum 2D organoids, apical-out organoids rotavirus [115]

ileum 3D organoids, 2D-monolayered organoids TGEV [110]

ileum 3D orgnoids rotavirus [116]

ileum 2D-monolayered organoids swine acute diarrhea syndrome 
coronavirus

[117]

ileum 2D-monolayered organoids rotavirus [118]
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bioactive materials, and cytokines to print specific struc-
tures of organoids quickly and accurately, which provides 
a new technology for simulating the in  vivo microenvi-
ronment to a higher degree [127]. Given that the core 
and surface of organoids are separated, and the nutri-
ents required for growing cells in the core and the waste 
produced are limited, microfluidic technologies that can 
improve material transport and produce more uniform 
organoids have been developed to overcome these limita-
tions [128]. However, these techniques have not yet been 
reported in porcine organoids.

Conclusion
Organoids provide an ideal in  vitro model for basic 
research on porcine viral diseases, which is develop-
ing rapidly in terms of complexity and standardization. 
As the field of organoid technology continues to evolve, 
porcine AOs and IOs are of great value in elucidating 
the mechanisms of virus recognition by cells, virus entry 
and replication, and virus-host interactions, and can pro-
vide a new theoretical basis for disease treatment and 
prevention.
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